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Abstract 

Effective management of benthic habitats is important for maintaining heathy and functional 

aquatic ecosystems. To provide managers with the best possible information, characterizing 

benthic habitats at the community level is essential; yet, acquiring the data sets needed to achieve 

this task is resource intensive and, at times, prohibitively expensive. Thus, thoughtful 

assessments of which data to collect and utilize in benthic habitat characterization studies are 

needed. Environmental data sets commonly used to characterize benthic habitats include a range 

of variables from water depth and sediment grain size to seabed features identified by sonar 

backscatter. The objective of this study was to identify the most useful environmental variables 

for characterizing infaunal benthic habitats and to determine how to best utilize these variables in 

analyses (e.g., by comparing continuous vs. categorical explanatory variables). The modeling 

approach used multivariate regression tree and redundancy analysis along with a critical cross-

validation step for model evaluation. Results indicated that models with more than ~ 7 

environmental predictors overfitted the data sets analyzed and that categorizing continuous 
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predictors into categorical ones influenced the proportion of infaunal community variation 

explained by each model. Habitats identified and characterized on the basis of sonar backscatter 

explained more of the infaunal community variation than any model that used a combination of 

other environmental variables (e.g., water depth & sediment grain size) or those constructed 

using categorical habitat classes from existing classification schemes. We therefore recommend 

maximizing the potential of sonar-derived variables for characterizing infaunal benthic habitats 

in nearshore, soft-sediment ecosystems.  
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1. Introduction 23 

The accurate characterization of coastal benthic habitats is a significant element of effective 24 

management because of the critical processes these habitats and associated communities 25 

contribute to ecosystems. Although numerous definitions of benthic habitats exist in the 26 

literature, they generally can be defined as areas of the seabed with distinct physical, chemical, 27 

and biotic characteristics (Lecours et al., 2015). The benthic communities within habitats have 28 

several important ecological functions including nutrient cycling (Welsh, 2003), providing 29 

structure and habitat for other organisms (Gray, 1974), planktonic food web interactions (Cloern, 30 

1982; Cerrato et al., 2004), and as prey for higher trophic foragers including waterbirds 31 

(Richman and Lovvorn, 2009; Pérez-Vargas et al., 2016; Maceda-Veiga et al., 2017) and 32 

demersal fishes (Bottom and Jones, 1990; McCormick, 1995; Bizzarro et al., 2017). Since most 33 

benthic organisms are largely sedentary and cannot easily relocate to more suitable habitats, 34 

benthic communities are also particularly susceptible to natural and anthropogenic disturbances 35 

(Pearson and Rosenberg, 1978; Kröncke and Reiss, 2010) making them excellent bioindicators 36 

of changes in habitat quality (Borja et al., 2000; Borja et al., 2015; Pelletier et al., 2018).  37 

Data sets that are commonly used to characterize soft-sediment (gravel, sand, and silt-clay) 38 

benthic habitats include biotic assemblage data in the form of counts of individual species, 39 

measurements of abiotic variables such as water depth (e.g., Smale, 2008; Marshall et al., 2018), 40 

sediment grain size (e.g., Sanders, 1958; Flanagan & Cerrato, 2015), sediment organic content 41 

(e.g., Silva et al., 2006; Ferraro & Cole, 2012), surficial percent cover of abiotic and biogenic 42 

materials (Taylor, 1998; Flanagan et al., 2018), and larger-scale geomorphological features 43 

detected by sidescan, single-beam, or multibeam sonar (Bell et al., 2000; Diaz et al., 2004; 44 

Weaver et al., 2013; Lecours et al., 2016). One way to utilize these data is to categorize the biotic 45 
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and abiotic variables using criteria from benthic habitat classification schemes, which are 46 

designed to provide a common language for describing and managing submerged habitats (e.g., 47 

Davies et al., 2004; Auster et al., 2009; Marshall et al., 2018). Whether the goal is to implement 48 

a habitat classification scheme or to quantitatively model variation in community-habitat 49 

relationships, a trade-off exists between the quality of the data collected (level of accuracy and 50 

precision), sample size, and spatial scale (resolution and extent) of the data sets used (Lecours et 51 

al., 2015; Flanagan et al., 2018). Yet, it is unclear how each of these characteristics should be 52 

prioritized in a study design (Lecours et al., 2015) or in an analysis.  53 

Habitat managers are tasked with making decisions based on the data available to them at the 54 

time, which have probably been analyzed to some extent, potentially resulting in important 55 

habitat information being lost from the original, “raw” data. Using an unsuitable approach to an 56 

analysis could result in a flawed interpretation regardless of the quality and completeness of the 57 

underlying data. To provide managers with meaningful information that can be used to protect, 58 

monitor, and/or restore benthic habitats and the ecological functions they provide, it is essential 59 

to characterize habitats at the community level (Allee et al., 2000; Parks, 2002; Palumbi et al., 60 

2003; Maher, 2006). Questions related to communities or "sets of co-occurring species" are some 61 

of the most difficult to address (Sutherland et al., 2013) especially in aquatic environments where 62 

community-habitat relationships are less easily observed, data are expensive to acquire (Deborde 63 

et al., 2016; Marshall et al., 2018) and studies are more limited relative to terrestrial ecosystems 64 

(Diaz et al., 2004; Lecours et al., 2015). In addition, subtidal, infaunal benthic communities in 65 

substrates dominated by gravel, sand, and silt-clay, the focus of the current study, are relatively 66 

less studied than intertidal communities (Fraschetti et al., 2005), epifaunal assemblages (Lecours 67 

et al., 2015), and subtidal, hard substrate reef communities (Fraschetti et al., 2005; Marshall et 68 



 

 

4

al., 2018). Thus, careful consideration of the limitations and the best utilization of benthic data 69 

sets for characterizing infaunal community-habitat relationships is a worthwhile undertaking. 70 

Numerous researchers have suggested that the environmental variables used to characterize 71 

benthic habitats should serve as proxies for discerning patterns in benthic community 72 

assemblages (Stevens & Connolly, 2004; Auster et al., 2009; McGonigle et al., 2009). It follows 73 

from this rationale that the environmental data or any categorical variables derived from them 74 

(including habitat classes) should quantitatively predict variation in community structure – a 75 

notion that can be tested explicitly and rigorously in a statistical modeling framework (Flanagan 76 

& Cerrato, 2015). Of the commonly collected environmental data used to characterize soft-77 

sediment benthic habitats, several questions arise regarding the number of environmental 78 

variables to include and the identity of the essential ones (Lecours et al., 2015). Many of the 79 

variables are correlated (e.g., sediment organic content and silt-clay), suggesting some level of 80 

redundant information will be present and that a subset of the variables may be utilized with little 81 

to no loss of explanatory power. Some variables that can be measured may or may not be useful 82 

proxies and may be relegated to secondary status under most circumstances. For example, some 83 

surficial cover characteristics (e.g., percent cover of sand, seaweed, shell, etc.) may be poor 84 

predictors of infaunal abundance. Inclusion of too many variables in a statistical model can result 85 

in overfitting, leading to deceptively high r2 estimates and the inclusion of unnecessary, spurious 86 

variables (Burnham & Anderson, 2002). 87 

Despite long-term studies of coastal benthic fauna (Petersen, 1913; Sanders, 1958; Flanagan & 88 

Cerrato, 2015), it also remains uncertain whether habitats are generally better described as 89 

varying along continuous gradients in underlying environmental factors or have discrete 90 
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boundaries with corresponding abrupt changes in community structure (Smale, 2008; Flanagan et 91 

al., 2018). Thus, in addition to the type of explanatory variables utilized, there are numerous 92 

options for how they are incorporated into a modeling framework to evaluate the underlying 93 

structure of the benthic community-habitat relationships in question. Water depth, for instance, 94 

can be used as a continuous explanatory variable in an analysis or be included as a categorical 95 

one (e.g., shallow, moderate, deep; Auster et al., 2009; FGDC, 2012). The Folk (1954) sediment 96 

classification scheme is also often used to categorize sediment grain size data (percent gravel, 97 

sand, silt, and clay) into a fixed set of classes, and it has been adopted by some habitat 98 

classification schemes for characterizing sediment composition across different habitats (e.g., 99 

Auster et al., 2009; FGDC, 2012). However, with water depth, sediment grain size, and other 100 

commonly collected environmental variables, it is unclear whether the categories can be 101 

identified a priori without compromising model performance or if one variable form (i.e., 102 

continuous vs. categorical) is superior to another. 103 

Here, we evaluated the extent to which environmental variables (water depth, sediment grain 104 

size, percent cover of cobble, shell, seaweeds, or other material, and regions with similar 105 

acoustic properties identified by sonar backscatter) that are typically measured in benthic habitat 106 

characterization studies explain infaunal community-habitat relationships in soft-sediment, 107 

nearshore environments ranging from brackish to near marine. The overarching objective of this 108 

study was to identify which types of environmental variables commonly collected in benthic 109 

habitat studies best explain relationships between infaunal communities and their environment 110 

and the most useful form these environmental data should take in statistical analyses. Our intent 111 

is to inform both managers and practitioners so that these variables may be prioritized in study 112 

designs relevant to benthic habitat characterization. To this end, we address questions of 1) 113 
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variable form (e.g., continuous vs. categorical variables), 2) variable complexity (the number and 114 

types of explanatory variables utilized), 3) uniformity (consistent selection of explanatory 115 

variables across data sets), and 4) priority (critical to measure).  116 

2. Methods 117 

2.1. Study areas  118 

This study was carried out using benthic data sets collected from five areas surrounding Long 119 

Island, New York: two within the Hudson River Estuary (Haverstraw Bay and Tappan Zee), one 120 

on Long Island’s north shore (Huntington Harbor), and two areas within Long Island’s Peconic 121 

Bays Estuary (Robins Island and Shelter Island; Figure 1). These areas are moderate in spatial 122 

extent ranging from 3.3 to 30.0 km2 and were selected to represent a variety of habitats from 123 

brackish to near marine. The Hudson River areas comprise the mesohaline portion of the estuary 124 

while the others are polyhaline. Detailed descriptions of the study areas and the data sets 125 

analyzed are available from the studies cited in Table 1. 126 

 127 
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Figure 1. Study area map. The number of in situ environmental and faunal samples collected from each area is 128 

indicated in parentheses.  129 

Table 1. The area of each study location and the sources of the data sets analyzed with references.  130 

Study Location Area 
(km2) 

Benthic assemblage, 
water depth, & sediment 
grain size data 

Surficial percent 
cover from 
underwater video 

Provinces CMECS Geoforms 

Haverstraw Bay 30.0 Cerrato et al. (2015) Not collected Bell et al. (2000) Bell et al. (2000) 
Tappan Zee 9.4 Maher & Cerrato (2004) Flanagan (2016) Bell et al. (2000) Bell et al. (2000) 
Huntington Harbor 16.5 Cerrato & Holt (2008) Flanagan (2016) Cerrato & Holt (2008) Weaver et al. (2013) 
Robins Island 3.3 Cerrato & Maher (2007) Flanagan (2016) Cerrato & Maher (2007) Weaver et al. (2013) 
Shelter Island 12.5 Cerrato & Maher (2007) Flanagan (2016) Cerrato & Maher (2007) Weaver et al. (2013) 

2.2. Summary of the data sets analyzed 131 

The benthic data sets consisted of infaunal assemblage abundance data and commonly collected 132 

environmental variables including water depth, sediment grain size (percent gravel, sand, and 133 

silt-clay), surficial percent cover (e.g., percent cover of sand, seaweed, shell, etc.), and non-sonar 134 

and sonar-derived areas of the seabed with presumably homogeneous bottom types (hereafter 135 

called geoforms and provinces depending on the data source; Table 1). In addition, we created 136 

categorical environmental variables and habitat classes from the data collected at each area using 137 

criteria from two habitat classification schemes relevant to New York waters: a habitat 138 

classification scheme for the Long Island Sound (LIS) region (Auster et al., 2009), hereafter 139 

referred to as the LIS scheme, and the Coastal and Marine Ecological Classification Standard, 140 

hereafter designated as CMECS (FGDC, 2012).  141 

2.3. Environmental and benthic assemblage data 142 

Faunal and sediment samples were collected using a modified van Veen grab sampler (0.04 m2) 143 

at the Haverstraw Bay (n = 51), Tappan Zee (n = 100), Huntington Harbor (n = 76), Robins 144 

Island (n = 60), and Shelter Island (n = 70) sites. Sampling locations were random but stratified 145 

by province to ensure full coverage of the range of infaunal habitats likely to be present. Water 146 



 

 

8

depth was recorded at the time of faunal sample collection. Subsamples of sediments for grain 147 

size analysis were drawn from each grab, and remaining material was washed through a 0.5 mm 148 

sieve for fauna. In the lab, sediment samples were partitioned into major size fractions (gravel, 149 

sand, & silt-clay) following Folk (1974). Individual organisms were identified to species 150 

whenever possible, and species abundance per grab sample (0.04 m2) was enumerated.  151 

Surficial percent cover of seabed materials (e.g., percent cover of sand, seaweed, shell, etc.) was 152 

obtained through supervised maximum likelihood analysis (ArcGIS 10.1 ESRI, Redlands, CA) 153 

of still images extracted from underwater videos, which were collected at four of the five study 154 

areas as in Flanagan (2016): Tappan Zee (n = 100), Huntington Harbor (n = 76), Robins Island (n 155 

= 60), and Shelter Island (n = 70). Image dimensions were 17.5 x 30 cm and comparable to those 156 

of the modified van Veen grab sampler (20 x 30 cm) used to collect the sediment and faunal 157 

samples. At Tappan Zee, recordings captured smaller areas (13.5 x 23.5 cm) because the camera 158 

had to be lowered closer to the seabed due to high turbidity (Flanagan, 2016).  159 

Provinces were created through visual analysis of the backscatter data from Haverstraw Bay, 160 

Huntington Harbor, Robins Island, and Shelter Island (Maher, 2006; Cerrato & Maher, 2007; 161 

Cerrato & Holt, 2008; Cerrato et al., 2015). Provinces for the Tappan Zee area were taken from 162 

Bell et al. (2000) who supplemented sidescan sonar data with multibeam bathymetry, chirp sub-163 

bottom seismics, sediment cores, and sediment grabs. Maps illustrating the configuration of the 164 

provinces identified at each area are provided in Supplementary Material.  165 

2.4. Habitat classes 166 
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The LIS scheme and CMECS habitat classes were assigned as fixed classes to all sampling 167 

locations using the water depth, sediment grain size, surficial percent cover, and geoform data 168 

collected from each area. A detailed description of the methods used to assign the habitat classes 169 

is provided in Supplementary Material. Water depth measurements from each station were 170 

categorized as shallow (< 4 m) or deep (> 4 m) explanatory variables. The sediment data were 171 

categorized using the Folk (1954) sediment classification system, and categorical biogenic 172 

components of the LIS scheme and CMECS were assigned using the surficial percent cover data. 173 

Geoforms, or structural regions of the seabed in the CMECS scheme, were taken from Weaver et 174 

al. (2013) for the Huntington Harbor, Robins Island, and Shelter Island areas. For the Tappan 175 

Zee area, bottom types described in Bell et al. (2000) were matched with the “Level 1” geoforms 176 

described in CMECS (FGDC, 2012). These included mollusc reef, flat, channel, and wave field. 177 

Four “Level 1” geoforms were identified for Haverstraw (mollusc reef, flat, channel, and 178 

dredged channel) from bathymetry, backscatter, and grain size data using CMECS criteria 179 

(FGDC, 2012). 180 

2.5. Multivariate analyses of the benthic community-habitat relationships 181 

Direct analyses (Legendre & Legendre, 1998) using a combination of multivariate regression 182 

tree (MRT; De’ath, 2002) and redundancy analysis (RDA; Jongman et al., 1995), along with a 183 

critical cross-validation step for model evaluation, were used to develop models of benthic 184 

community-habitat relationships. MRT and RDA are robust to collinearity in the explanatory 185 

variables since both are forward selection stepwise procedures that remove explained variance at 186 

each step before considering subsequent explanatory variables (Jongman et al, 1995). Faunal 187 

data were Hellinger transformed prior to analysis by calculating the square root of the relative 188 
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abundance of each taxon within a sample. This transformation produces ecologically reasonable 189 

measures of compositional differences when coupled with Euclidean distance (Legendre & 190 

Gallagher, 2001), the metric utilized by both MRT and RDA; thus, this common metric allowed 191 

for direct comparisons of fit across statistical models, a feature that would not be possible if 192 

MRT were combined with other direct ordination methods (e.g., canonical correspondence 193 

analysis with its chi-square metric). 194 

Since one of the main goals of this study was to identify which environmental variables best 195 

characterized the benthic habitats examined and whether variable form (e.g., continuous vs. 196 

categorical explanatory variables) influenced model performance, we developed models 197 

consisting of single types of environmental variables in addition to models with multiple types of 198 

explanatory variables (Tables 2-4). Wherever possible, we compared the continuous version of 199 

each explanatory variable (e.g., water depth in meters) to categorical analogs (e.g., the 200 

shallow/deep categories from the LIS scheme). Categorical explanatory variables were created in 201 

three ways (Tables 2 & 4): 1) defined a priori, e.g., using criteria from the LIS and CMECS 202 

habitat classification schemes (hereafter referred to as fixed categorical variables), 2) created by 203 

combining the fixed categorical variables into larger sets based on MRT results (hereafter 204 

referred to as simplified categorical variables; Figure 2), and 3) identified from the results of 205 

MRT on the continuous explanatory variables (e.g., sediment grain size), breaking the 206 

continuous variable up into intervals (hereafter referred to as flexible categorical variables; 207 

Tables 2 & 4; Figure 2). In addition, we included RDA models that can use continuous 208 

explanatory variables to examine potential linear relationships between benthic community 209 

structure and gradients in water depth, sediment composition, or surficial percent cover (Table 210 

2). Models containing multiple explanatory variables utilized the LIS and CMECS habitat 211 
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classes as fixed (or simplified) categorical explanatory variables, a combination of flexible 212 

explanatory variables and simplified provinces or geoforms, and a combination of continuous, 213 

linear explanatory variables with simplified provinces or geoforms (Table 3).  214 

Table 2. Framework for assessing the extent to which single types of commonly collected environmental variables 215 

explain benthic community-habitat relationships when they are used as fixed categorical, simplified categorical, 216 

flexible categorical, or continuous explanatory variables in an analysis. Figure 2 provides an example that illustrates 217 

the MRT-based approach used to create the fixed, simplified, and flexible categorical variables and Table 4 218 

describes the different variable types & forms utilized.  219 

Variable 
type & form  

Fixed categorical  

(all possible categories) � 

Simplified 
categorical 
(determined by 
MRT on fixed 
categorical 
variables) 

Flexible categorical 
variables 
(determined by 
MRT on continuous 
variables) 

Continuous linear 
(RDA on continuous 
variables)  

Water depth Shallow/deep (± 4 m) from 
FGDC (2012) 

NA Flexible depth 
intervals 

Continuous depth 
gradient 

Sediment 
grain size 

Fixed sediment categories from 
Folk (1954) 

Simplified sediment 
categories from Folk 

(1954) 

Flexible sediment 
grain size intervals 

(%gravel, sand & silt-
clay) 

Continuous sediment 
gradient (%gravel, 
sand & silt-clay) 

Percent 
cover 

NA NA Flexible percent cover 
intervals 

Continuous percent 
cover (% cover of 

sand, fauna, shell, etc.) 

Geoforms Bell et al. (2000); FGDC 
(2012); Weaver et al. (2013) 

Simplified geoforms NA NA 

Provinces Bell et al. (2000); Maher & 
Cerrato (2004); Maher (2006); 

Cerrato & Maher (2007); 
Cerrato & Holt (2008); Cerrato 

et al (2015) 

Simplified provinces NA NA 

 220 

221 
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Table 3. Framework for assessing the extent to which models with multiple types of categorical and/or continuous 222 

explanatory variables explain benthic community-habitat relationships. Habitat classes were evaluated as part of the 223 

multiple variable models since they integrate information from all of the other environmental variables collected in 224 

this study. 225 

Explanatory variables 
from Table 1 for models 
with multiple explanatory 
variables 

Fixed categorical MRT: Flexible environmental 
categories & simplified 
geoforms or provinces 
 

RDA: Continuous (linear) 
environmental & simplified 
categorical geoforms or 
provinces  
 

Habitat classes  FGDC (2012) Simplified habitat classes 

 

NA 

Environmental variables 
& geoforms  

NA 
Flexible depth, flexible sediment 
grain size, flexible percent cover 
& simplified geoforms 

 

Continuous depth, 
continuous sediment grain 
size, continuous percent 
cover & simplified geoforms 

 
Environmental variables 
& provinces 

NA 
Flexible depth, flexible grain 
size, flexible percent cover & 
simplified provinces 

 

Continuous depth, 
continuous grain size, 
continuous percent cover & 
simplified provinces 

 

MRT was used in the present study to create groups of faunal assemblage sample data based on 226 

repetitive, binary splitting of the categorical (e.g., the fixed habitat classes and provinces) and/or 227 

continuous (e.g., water depth, grain size, and surficial percent cover) explanatory variables. 228 

Binary splits were selected based on one of the explanatory variables to minimize differences in 229 

community structure within sample groups while maximizing differences between groups 230 

(De’ath, 2002). When MRT was run using fixed categorical variables, the criterion split the data 231 

into subsets containing samples from one or more categories (simplified categories). For 232 

continuous variables (water depth, sediment grain size, and percent cover), the criterion 233 

partitioned the range of the variable into intervals (flexible categories) and membership consisted 234 

of all samples in the interval. For all models, the binary splitting process was repeated until a 235 

stopping rule was met. For deriving simplified and flexible categorical variables, the stopping 236 
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criterion was based on 10-fold cross-validation. Figure 2 provides an example illustrating this 237 

process. The final groups, called terminal nodes, are represented by the multivariate mean of all 238 

taxa belonging to that group. MRT models were run using the rpart function from the mvpart 239 

package in R (De’ath, 2014; R Core Development Team, 2017).  240 

241 
Figure 2. An example of models with fixed categorical variables (left), simplified categorical variables (middle), and 242 

flexible categorical variables (right) created using MRT. Response variables are Hellinger transformed species 243 

abundances and explanatory variables are either the Folk (1954) grain size categories or percent gravel, sand and 244 

silt-clay. This example is from Shelter Island and utilized the fixed grain size categories from the Folk (1954) 245 

sediment classification system to create simplified categories by combining the fixed categories into larger groups 246 

(e.g., gM, gmS, mG, and msG were grouped). For the flexible categories, percent gravel, sand, and silt-clay were the 247 

explanatory variables and a single split (based on percent silt-clay) was selected in the final MRT model. The 248 

abbreviations refer to descriptive names from Folk (1954): (g)S = slightly gravelly sand, gS = gravelly sand, sG = 249 

sandy gravel, gM = gravelly mud, gmS = gravelly muddy sand, mG = muddy gravel, and msG = muddy sandy 250 

gravel. The histograms at the bottom of each node are the average Hellinger transformed abundances of each taxon. 251 

The deviance (i.e. the sum of squared differences between Hellinger transformed species abundances) is indicated 252 

for each group.  253 

RDA is a multivariate technique that combines ordination of sample species abundance data with 254 

multiple linear regression on the explanatory variables (Jongman et al., 1995). RDA was 255 

Folk=(g)S,gS,sG

Folk=(g)S

Folk=gS

Folk=gM,mG

Folk=gM Folk=gmS

Folk=gM,gmS,mG,msG

Folk=gS,sG

Folk=sG

Folk=gmS,msG

Folk=mG Folk=msG

14.544

6.5526 1.2621

0.30878 0.21874

1.7767 1.1719

Folk=(g)S,gS,sG

Folk=(g)S

Folk=gM,gmS,mG,msG

Folk=gS,sG

14.544 8.2686

5.3885

SiltClay< 4.75 SiltClay>=4.75

18.321 10.839
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implemented in Canoco 4.5 (Microcomputer Power, Ithaca, NY, USA), and it can utilize both 256 

continuous and categorical explanatory variables. Categorical variables were incorporated into 257 

the analysis by representing the n categorical levels with (n - 1) binary (0, 1) variables. A script 258 

for 10-fold cross-validation of RDA results was created using the functions rda and predict in 259 

the vegan package (Oksanen et al., 2017; R Core Development Team, 2017). 260 

RDA is limited to linear relationships between the response (benthic assemblage data) and 261 

explanatory variables (environmental data), but MRT can effectively explain a variety of 262 

community-habitat relationships including those that are nonlinear or that contain discontinuities 263 

and interactions (Crawley, 2007; Hastie et al., 2001). Thus, utilizing MRT and RDA together 264 

allowed the exploration of a wide range of community-habitat relationships (Flanagan & Cerrato, 265 

2015). By comparing fit between the MRT and RDA models that were run using the same set of 266 

explanatory variables, it also becomes possible to infer whether community-habitat relationships 267 

are better described as varying along continuous (linear) gradients in underlying environmental 268 

factors (i.e., where RDA outperformed MRT) or by discrete boundaries with corresponding 269 

changes in community structure (i.e., where MRT outperformed RDA; Flanagan & Cerrato, 270 

2015).  271 

Cross-validation was a critical element in this study to protect against generating overfitted 272 

models and to provide a rational means of comparing models with large differences in the 273 

number of explanatory variables. Details regarding our approach to cross-validation in MRT and 274 

RDA, including an explanation of why cross-validation was favored over AIC, are provided in 275 

Supplementary Material. Table 4 provides a guide to the terminology used to describe the 276 
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various data types, variable forms, and modeling definitions used in this study, highlighting those 277 

that are the most essential to understanding our approach and for interpreting the results. 278 

Table 4. Definitions of the terms used to describe the variables and analysis methods utilized in this study. 279 

Term Definition in the context of this study 

Variable type Refers to the type of response (faunal data) and explanatory variables (environmental data) 
collected and used in the analyses.  

       Fauna The abundances of each taxa within a van Veen grab sample. 

       Water depth Water depth of each sampling location in meters. 

       Sediment grain size The percentage of gravel, sand, and silt-clay in sediment samples. 

       Surficial percent cover Percent surficial cover of abiotic and biotic seabed features (e.g., sand, seaweeds).  

       Provinces Areas of the seabed that consist of relatively homogeneous bottom types (e.g., sandy vs. 
muddy areas) identified from visual analysis of sonar data (e.g., backscatter). 

       Geoforms Presumably uniform regions of the seabed that are defined using the criteria from CMECS. 
Unlike provinces, geoforms can be derived with or without the use of sonar data.  

       Habitat classes Habitat names derived using the criteria from the LIS scheme and CMECS. Used as fixed and 
simplified categorical (nominal) variables in the analyses. 

Variable form Refers to the structure of the explanatory variables used in the analyses (categorical vs. 
continuous).  

       Fixed categorical variables Categorical explanatory variables that were defined prior to analyses. In most cases the fixed 
categorical variables in this study are from the LIS and CMECS habitat classification 
schemes. 

       Simplified categorical variables Categorical explanatory variables that were created by combining the fixed categorical 
variables into larger sets using MRT analysis. 

       Flexible categorical variables Categorical explanatory variables that were defined using MRT analysis on continuous 
variables. In other words, flexible categories were defined by analysis rather than being 
defined a priori using fixed criteria. 

       Continuous variables Non-categorical (numeric) explanatory variables. Examples include water depth in meters and 
the percentage of gravel, sand, and silt-clay in a sample. 

Benthic community-habitat relationships The relationship between benthic communities and the biotic and abiotic components of their 
environment. 

       Single variable models MRT and RDA models with single explanatory variables (e.g., models with water depth as the 
only explanatory variable). 

       Multiple variable models MRT and RDA models with multiple types and combinations of explanatory variables (e.g., 
models with water depth, sediment grain size, percent cover, and provinces as explanatory 
variables). 

Explained variance The proportion of benthic community variation explained by the explanatory variables used in 
MRT or RDA. 

       r2 The coefficient of determination. Used in this study to illustrate differences between r2 and 
cross-validated r2.  This comparison is important because large differences between r2 and 
cross-validated r2 indicate that models are overdetermined; thus, the ability of the 
environmental data used in these models to explain benthic-community habitat relationships is 
unreliable. 

       Cross-validated r2 The r2 estimated by cross-validation analysis. A more honest or conservative measure of how 
well the environmental data explain benthic community-habitat relationships. 

3. Results 280 
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3.1. General environmental and faunal characteristics  281 

All sites were nearshore with maximum water depths ranging from 11 to 20 m. Minimum 282 

sampling depths were determined by the draft of the vessel used in the study (~ 2.6 m). The 283 

percentage of samples < 4 m, the depth criterion from the LIS scheme, ranged from 3.3% at 284 

Robins Island to 48.1% at Haverstraw Bay. Sediment grain size varied broadly among study 285 

areas and, once classified, occupied 7 to 13 of 15 possible Folk (1954) grain size categories. A 286 

total of 15 cover classes were identified across the study areas surveyed (Table S3). Sites had 287 

between one and four CMECS geoforms present, and the number of provinces defined based on 288 

acoustic backscatter at each area ranged from 5 at Haverstraw Bay to 15 at Huntington Harbor. 289 

The Supplementary Material provides example surficial percent cover classifications derived 290 

from underwater videos and maps illustrating the configuration of the provinces at each study 291 

area. 292 

Mean infaunal abundances and species richness per 0.04 m2 grab sample in each study area were 293 

106 individuals and 9 taxa for Haverstraw Bay, 103 individuals and 11 taxa in the Tappan Zee, 294 

349 individuals and 15 taxa in Huntington Harbor, 279 individuals and 25 taxa in Robins Island, 295 

380 individuals and 24 taxa per sample in Shelter Island. Overall species richness also varied 296 

across study areas with a total of 25 taxa for Haverstraw Bay, 40 taxa identified in the Tappan 297 

Zee, 82 in Huntington Harbor, 71 in Robins Island and 95 taxa in Shelter Island. 298 

3.2. Summary of the benthic habitat classes identified using the LIS scheme and CMECS 299 

The LIS scheme and CMECS produced identical habitat classes when applied to the data sets 300 

examined in this study (Tables S1 & Table S2). Consequently, models that used the categorical 301 

habitat classes created from these schemes will simply be referred to as habitat class models. The 302 
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habitat classes predominantly included shallow (< 4 m) and deep (> 4 m) areas with muddy, 303 

sandy, or slightly gravelly sediments that were generally devoid of biogenic features, such as 304 

mussel beds or reefs. A range of 10 to 26 habitat classes were identified at each study area, and 305 

the top 2 to 3 habitat classes with the greatest frequency of occurrence represented between 26.7 306 

to 63.3% of the stations sampled. At Haverstraw Bay, habitat classes consisted of 1 to 6 307 

sampling stations. Eleven of the 23 habitat classes had only one sample. The three habitat classes 308 

with the most sampling stations (5 to 6) were shallow (< 4 m) with Folk (1954) sediment classes 309 

consisting of slightly gravelly sandy mud, deep (> 4 m) with slightly gravelly sandy mud, and 310 

deep with slightly gravelly mud. The two most common habitat classes found for the Tappan Zee 311 

data set included nearly half (45%) of the 100 stations sampled and consisted of deep areas with 312 

either mud or mud with slightly coarser sediments. The two habitat classes most common to 313 

Huntington Harbor represented 38% of the 76 stations sampled and included deep areas with 314 

gravelly muds or gravelly muddy sands. Robins Island had the largest fraction of its sampling 315 

stations represented by two habitat classes (63% of the 60 stations sampled). These consisted of 316 

deep areas with sediments composed of slightly gravelly muddy sands or slightly gravelly sandy 317 

muds. The two most common habitat classes found for the Shelter Island data set represented 318 

42.9% of the 70 stations sampled and included deep areas with either slightly gravelly sands or 319 

gravelly muddy sands with Crepidula fornicata (slipper snail) beds. 320 

3.3. Fixed categorical models & overfitting 321 

The expected relationship between the coefficient of determination (r2) and cross-validated r2 322 

was observed across all models (Figures 3-5), particularly those that used fixed categorical 323 

explanatory variables. In particular, r2 increased monotonically with each binary split in MRT 324 

and as each variable was added in RDA. Conversely, cross-validated r2 initially increased, 325 
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reached a maximum, and then either leveled off or declined with subsequent additions of 326 

explanatory variables. Figure 3 provides examples of an MRT and RDA analysis illustrating this 327 

pattern. Models with large differences between r2 and cross-validated r2 overfitted the data sets 328 

analyzed and are therefore inadequate for reliably explaining patterns in benthic community-329 

habitat relationships. 330 

 331 

Figure 3. Differences between r2 and cross-validated (CV) r2 ± 1 SE with increasing numbers of groups (terminal 332 

nodes) in MRT and variables selected in RDA. Examples are plotted using the results from the fixed province model 333 

at Tappan Zee and the linear environmental variables with province model at Shelter Island.  334 

The fixed categorical sediment models (i.e., those with 7 to 13 Folk categories) consistently 335 

overfitted the data sets analyzed with r2 ranging from 23.7 to 35.5% and cross-validated r2 values 336 

that never exceeded 10%. Full versions of the LIS and CMECS habitat class models had r2 337 

values accounting for 34.1 to 69.0% of the total community variation (Table S4), but also 338 

overfitted all of the data sets analyzed, as did the models that combined water depth, sediment 339 

grain size, percent cover, and fixed geoforms or acoustic provinces. These models contained 7 to 340 
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24 variables and had r2 values ranging from 32.0 to 73.9%, but cross-validated r2 values were 341 

often < 0% (Table S4). Because of this consistent overfitting in the fixed categorical models 342 

(with the exception of fixed depth), only detailed results of the simplified categorical, flexible 343 

categorical, and continuous models will be reported in subsequent sections. 344 

3.4. Models with single types & forms of environmental variables 345 

Of the environmental variable types included in the single variable models, provinces explained 346 

the largest proportion of the benthic community variation (Figure 4). In the simplified categorical 347 

models, cross-validated r2 for provinces was on average 4.8 times greater than water depth, 3.8 348 

times greater than sediment grain size, 7.1 times greater than surficial percent cover, and 3.1 349 

times greater than the CMECS geoforms (Figure 4). The CMECS geoforms at three of the five 350 

sites (Huntington Harbor, Robins Island, and Shelter Island) were derived without the use of 351 

sonar data and these models explained little to no community variation. However, the two sites 352 

with geoforms that were derived from sonar data based on CMECS criteria (Haverstraw Bay and 353 

Tappan Zee) fared better with cross-validated r2 exceeding 20% like the provinces (Figure 4). 354 

The water depth, sediment grain size, surficial percent cover, and geoform models rarely (8 of 44 355 

cases) exceeded 10% cross-validated r2 (Figure 4). The exceptions were the flexible water depth 356 

model at Huntington Harbor (11.0%), the linear sediment models at Tappan Zee (11.2%) and 357 

Huntington Harbor (10.8%), and the simplified categorical sediment model at Shelter Island 358 

(10.9%). In some cases, variable form (i.e., continuous vs. categorical) consistently influenced 359 

the proportion of community variation explained by the environmental variables across the data 360 

sets analyzed (Figure 4). For instance, models that utilized sediment grain size as a continuous 361 

explanatory variable always explained more of the community variation than the ones that used 362 
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sediment grain size as fixed or simplified categorical explanatory variables based on the cross-363 

validated r2 (Figure 4). However, categorizing the continuous water depth, sediment grain size, 364 

and percent cover data did not substantially increase or decrease cross-validated r2, with the 365 

exception of the fixed categorical models that overfitted the data sets analyzed. There are some 366 

additional structural patterns worth noting in regard to the comparative analyses of the fixed 367 

categorical, simplified categorical, flexible categorical, and continuous variables, which are 368 

addressed in the Discussion. 369 

 370 

Figure 4. Infaunal community variation explained by models with single types of environmental variables at each 371 

study area. The variable type (water depth, sediment, etc.) and form (e.g., categorical vs. continuous) of each 372 

explanatory variable was evaluated using the framework outlined in Table 2. Both r2 and cross-validated (CV) r2 373 

values ± 1 SE are plotted for comparison. The number of groups in MRT and variables selected in RDA by the 374 

cross-validation analysis is indicated for each model. Results for each data set were standardized by dividing the 375 
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explained variance by the total variance in the faunal data. Details about the MRT splits and variables selected in 376 

RDA are provided in Supplementary Material (Table S4). 377 

3.5. Models using multiple types & forms of environmental variables 378 

Multiple variable models with simplified provinces had 5.3 times greater cross-validated r2 379 

compared to the simplified habitat class models (Figure 5), and in models with simplified 380 

provinces and other types of environmental variables, cross-validated r2 was 2.2 times greater on 381 

average than models without provinces. The models that utilized flexible categorical or 382 

continuous environmental variables with simplified geoforms had 3.2 times greater cross-383 

validated r2 than the simplified habitat class models (Figure 5). Moreover, models with water 384 

depth, sediment grain size, and/or surficial percent cover variables with geoforms as the 385 

explanatory variables were more comparable to those with provinces when the geoforms were 386 

based on applying the CMECS criteria using sonar backscatter data, as was the case for 387 

Haverstraw Bay and Tappan Zee. Models with provinces at these two areas only had 1.3 times 388 

greater cross-validated r2 on average when compared to the models with geoforms but were 2.2 389 

times greater than those at the other sites where geoforms were not derived from sonar (Figure 390 

5). This reflects the same pattern found in the analyses of geoforms as a single type of 391 

explanatory variable. 392 

The multiple variable models with simplified provinces and geoforms contained 1 to 6 393 

explanatory variables after applying the cross-validation step (Figure 5). While these models 394 

were dominated by the simplified province and geoform variables, the other environmental 395 

variables selected varied across each study area (Table S4). Water depth and sediment grain size 396 

were selected across all data sets, except for Haverstraw Bay, and the simplified province and 397 
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geoform models at Robins Island were the only ones with percent cover variables (percent cover 398 

of mud and Microciona prolifera). Moreover, explanatory variable form did not substantially 399 

impact the ability of the variable to explain community variation in the multiple variable models, 400 

aside from the fixed categorical variables that overfitted the data sets analyzed (Table S4).  401 

 402 

Figure 5. Infaunal community variation explained by models with multiple environmental variables at each study 403 

area. Each model was constructed using the framework outlined in Table 3. Results for models with fixed 404 

categorical variables are not presented since they consistently overfitted the data sets analyzed. Both r2 and cross-405 

validated (CV) r2 values ± 1 SE are plotted. The number of groups in MRT and variables selected in RDA by the 406 
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cross-validation analysis are indicated for each model. Results for each data set were standardized by dividing the 407 

explained variance by the total variance in the faunal data. Simplified province models are plotted for comparison. 408 

More information on each model including details about the MRT splits and variables selected in RDA is provided 409 

in Supplementary Material. 410 

4. Discussion 411 

Our findings provide insight into questions of 1) variable form (e.g., continuous vs. categorical 412 

variables), 2) variable complexity (the number and types of explanatory variables utilized), 3) 413 

uniformity (consistent selection of explanatory variables across data sets), and 4) priority (critical 414 

to measure) that can be used to guide study designs and modeling efforts concerned with benthic 415 

habitat characterization and management in nearshore, soft-sediment ecosystems. First, we found 416 

that variable form influenced model performance but often not substantially. For instance, the 417 

continuous sediment grain size models generally explained slightly more of the community 418 

variation than the fixed or simplified categorical sediment models (Figure 4), and the models 419 

with continuous environmental variables and geoforms always had a greater cross-validated r2 420 

than the models with flexible environmental variables and geoforms (Figure 5). The one instance 421 

where variable form had a substantial impact involved the fixed categorical models because they 422 

overfitted the data sets analyzed and explained little cross-validated r2. Second, models of 423 

moderate complexity with 2 to 6 explanatory variables outperformed those with more complex 424 

structures that generally overfitted the data. Third, provinces were uniformly selected across all 425 

data sets analyzed. Water depth and/or sediment grain size variables were also selected across 426 

most of the data sets in models with multiple types of environmental variables (Table S4), but 427 

provinces always explained the largest proportion of the community variation.  428 
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There are some general structural patterns worth noting in regard to the comparative analyses of 429 

the fixed categorical, simplified categorical, flexible categorical, and continuous environmental 430 

variables. For instance, the ± 4 m water depth criterion from the LIS scheme, i.e., the fixed 431 

categorical depth model, was almost always less effective at explaining community variation 432 

than the flexible or continuous linear depth models. Water depths identified by single binary 433 

splits in MRT ranged from 5 to 12 m, i.e., a depth always a greater than the ± 4 m depth criterion 434 

from the LIS scheme (Table S4).  435 

The simplified categorical sediment models always consisted of only 2 to 3 categorical groups 436 

that were created by combining several of the fixed Folk categories in MRT into larger sets, and 437 

these simplified sets always had a cross-validated r2 comparable to or greater than the fixed 438 

categorical sediment models (not shown). None of the sediment models had cross-validated r2 439 

values exceeding 11% and the average cross-validated r2 was 6.1 + 3.5% (sd), suggesting that 440 

sediment grain size is a moderate predictor of infaunal community structure in the data sets 441 

examined regardless of variable form.  442 

Considering that the study sites examined were predominantly soft-bottom areas with a very low 443 

frequency of surficial biotic structure (e.g., in the form of shell, seaweed, etc.), it is not surprising 444 

that cross-validated r2 never exceeded 10% in the models that utilized percent cover as the only 445 

explanatory variable. Just 10 of 100 samples were classified as mollusc reefs at Tappan Zee, 2 of 446 

60 at Robins Island, and 8 of 50 at Haverstraw Bay. Only the Shelter Island site, with 38 of 70 447 

samples characterized as a “Crepidula Reef”, had substantial biogenic structure. Although the 448 

slipper snails (Crepidula fornicata) occurred in consolidated aggregations of 5 to 10 individuals 449 
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formed by preferential larval settlement (Zhao & Qian, 2002), the aggregations occurred on sand 450 

and were not attached to hard substrate, nor were they permanent structures.  451 

Based on the comparison between the geoforms derived from applying the CMECS criteria using 452 

sonar data at the Haverstraw Bay and Tappan Zee sites and those taken from the Weaver et al. 453 

(2013) study that were derived with no sonar basis, it is clear that the habitat classification 454 

schemes would benefit from utilizing sonar data to define “Level 1” geoforms in CMECS (Table 455 

S1) and perhaps in applying the “Class Level” of the LIS scheme (Table S2). This does not, 456 

however, fully explain the generally poor performance of the habitat class models. It is important 457 

to note that this overall poor quantitative assessment of the habitat class models does not negate 458 

the value of these classification schemes in producing a common nomenclature for describing 459 

habitats, only that the habitat classes cannot be used at face value as a quantitative, categorical 460 

representation of the habitat structure for infauna in soft-sediment, nearshore environments. 461 

There was strikingly little difference in cross-validated r2 values for models using only provinces 462 

compared to those that combined provinces with other environmental variables (Figure 5), 463 

suggesting that there was little additional explanatory contribution to including depth, grain size, 464 

and percent cover variables to models with provinces. This outcome raises questions relevant to 465 

the spatial scale of the explanatory variables included in our analyses. Depth, grain size, and 466 

percent cover are in situ variables, i.e., collected at the same locations as the faunal samples. 467 

Provinces are seascape scale variables representing broad areas of the seafloor. Flanagan et al 468 

(2018) examined scaling questions at four of the five sites in the current study (Haverstraw Bay, 469 

Tappan Zee, Robins Island, and Shelter Island). They found that the within-province explanatory 470 

value of water depth, grain size, and percent cover was weak, and these variables primarily 471 
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contributed to explaining between-province variability in fauna, i.e., something that the 472 

categorical province variables were also representing. They suggested further that one 473 

explanation for their result might be that within-province faunal variation was being regulated by 474 

patchy rather than gradational factors (e.g., water depth gradients) that were not being measured. 475 

In this study, the provinces far outperformed the LIS scheme and CMECS habitat classes as well 476 

as all other environmental data collected. This outcome is particularly useful from a management 477 

perspective. Provinces represent habitats at seascape scales, which are mappable and therefore 478 

easier to identify and monitor. Moreover, in the case of the study areas examined, the provinces 479 

were relatively easy and cost-efficient to derive from backscatter intensity data. The provinces 480 

were created using visual analysis of the backscatter data from each study area, an inherently 481 

subjective approach. Thus, in the future, it may be worthwhile to compare the provinces in this 482 

study to those derived using more objective image processing techniques such as pixel-based 483 

methods (e.g., Jenks natural breaks for unsupervised classification of backscatter intensity 484 

images (Jenks, 1967 but also see Janowski et al., 2018) and/or object-based image analysis (e.g., 485 

Ismail et al., 2015; Janowski et al., 2018), which can be implemented using various classification 486 

algorithms including classification and regression tree analyses (Breiman et al., 1984), random 487 

forests (Breiman, 2001), support vector machines (Cortes & Vapnik, 1995), and k-nearest 488 

neighbor analyses (e.g., Janowski et al., 2018). However, based on our assessment of the 489 

backscatter data collected from the sites in this study, it seems unlikely that these more 490 

sophisticated and objective approaches would have yielded a different outcome. 491 

Other measures derived from sonar data (e.g., rugosity, slope, aspect, etc.) have been useful in 492 

describing and predicting clear patterns in the abundance and distribution of benthic epifauna 493 
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(Kostylev et al., 2001; Holmes et al., 2008; Rattray et al., 2009; Pierdomenico et al., 2015) and 494 

demersal fishes (Iampietro et al., 2005; Wedding & Friedlander, 2008; Young et al., 2010). In 495 

previous work, sonar data have been used as proxies for natural phenomena (e.g., exposure to 496 

wave action, subtidal currents, and vulnerability to sedimentation) that could conceivably govern 497 

patterns in benthos, but which are typically unmeasured (Rattray et al., 2009, 2013). While the 498 

utility of sonar in characterizing habitats for benthic epifauna and demersal fishes has been well-499 

documented, the explanatory value of sonar in characterizing benthic infauna has been relatively 500 

unexplored (Brown et al., 2011). Using improved techniques for the classification of infaunal 501 

habitats is particularly important since large areas of the ocean floor primarily consist of soft 502 

sediments (Rhoads, 1974), and thus infaunal habitats are conceivably the most widespread in 503 

nature. 504 

A significant finding to understanding the ecology and distribution of benthic infaunal 505 

assemblages in the present study is that it can be easy to overfit benthic community-habitat 506 

models using environmental data sets that are commonly included as part of habitat 507 

characterization studies (e.g., water depth, sediment grain size, etc.). This was clearly and 508 

repeatedly indicated in the analyses by the large differences between the coefficient of 509 

determination (r2) and cross-validated r2 especially when full models were examined (Table S4).  510 

The overfitting problem was also illustrated by the large differences in r2 and the numbers of 511 

variables selected between the fixed and simplified models. The cross-validation procedure 512 

indicated, with few exceptions, that models with 5 or fewer variables tended to be selected. 513 

This outcome, consistent across all five study sites, has several consequences for data sets of 514 

comparable size and composition. First, a fully structured model made up of multiple types of 515 
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environmental variables will give deceptively high r2 values that cannot be validated. This holds 516 

true for all models considered in this study that used combinations of environmental variables 517 

(Figure 5), and includes the categorical habitat class models. Second, collecting larger numbers 518 

of benthic samples is needed in order to increase the chance of validation; however, this may be 519 

prohibitively expensive (Deborde et al., 2016; Marshall et al., 2018). The data sets examined in 520 

the present study each required 9 to 18 months effort to produce. With the possible exception of 521 

Haverstraw Bay, where sampling density was 1.7 samples per km2, sampling density ranged 522 

from 5 to 18 samples per km2. Yet, there was no obvious relationship between sample size, 523 

sample density, and the number of selected parameters. For example, the RDA model selection 524 

process that used all explanatory data resulted in 3 variables for both the Haverstraw Bay and 525 

Tappan Zee sites despite the differences in sample size (51 vs. 100) and sample density (1.7 526 

samples per km2 vs. 10.6 samples per km2). Burnham and Anderson (2002) suggested that effect 527 

sizes taper in biological systems with a few large effects followed by progressively smaller ones, 528 

and that the smaller effects require a very large number of samples to identify. This statement is 529 

applicable to the data sets in the present study, and results suggest that the larger effects are 530 

being captured. Unfortunately, there was no clear indication of how much additional effort 531 

would be required to detect smaller effects. 532 

Third, given the practical limitations of identifying smaller effects in these data sets, it seems 533 

imperative to use existing and to discover new environmental variables that integrate ecological 534 

processes in order to “package” the largest amount of explanatory value in the fewest number of 535 

variables. Since benthic fauna are connected to the environment at very fine scales (e.g., tubes 536 

engineered by infauna may influence benthic boundary layer flow; Shumchenia & King, 2010), 537 

it is curious that the acoustic provinces, by far the largest-scale explanatory variable used in the 538 
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present study, explained substantially more of the community variance in the data sets relative to 539 

other types of environmental variables. This curious feature is explained by the fact that sonar 540 

backscatter reflects multiple physical (e.g., grain size, compaction, porosity, sorting, volume 541 

scattering) and biogenic (e.g., shell beds, shell hash, bioturbation, and tube mats) features and 542 

processes (Jackson & Briggs, 1992; Borgeld et al., 1999; Goff et al., 2000; Brown et al., 2002, 543 

2011; Urgeles et al., 2002; Cutter et al., 2003; Ferrini, 2004; Nitsche et al., 2004, 2007). Thus, 544 

obvious candidates for new explanatory variables include metrics derived from detailed analysis 545 

of sonar backscatter and bathymetry data (Huvenne et al., 2002; Maher, 2006; Fonseca & Mayer, 546 

2007; Holmes et al., 2008; Rattray et al., 2009), and perhaps others that integrate grain size, 547 

water content, and shallow sediment structure such as a bottom penetrometer (Stark & Wever, 548 

2009). 549 

Finally, the current study results emphasize why ground truth sampling of the fauna is absolutely 550 

essential. Quantitative macrofaunal community data are “expensive and time consuming” 551 

(Verfaillie et al., 2009) to collect and often lacking in habitat classification and mapping studies 552 

(Ismail et al., 2015). Geologic or geophysical features detectable by surveys that appear to 553 

characterize spatially distinct sedimentary regions (e.g., sand veneers, large sand waves, rippled 554 

sand) are not necessarily ecologically relevant (Snelgrove & Butman, 1994; Brown et al., 2002; 555 

McBreen et al., 2008). It is clear from the results of the current study that complex abiotic-biotic 556 

data sets have limitations, and without careful analysis, models can easily over-characterize by 557 

fitting spurious variation (i.e., “noise”). Thus, habitat identification and characterization models 558 

must be carefully and rigorously tested. The model selection process used in this study focused 559 

on identifying patterns in the data sets rather than on identifying a model with high r2.  560 
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Results presented in this paper are broadly applicable to studies and management efforts 561 

concerned with explaining benthic community-habitat relationships, highlight the importance of 562 

maximizing the use of sonar data in terms of its ability to identify and characterize benthic 563 

systems without overfitting the data, and draw attention to the problem of over-characterization 564 

in the context of habitat classification. Future emphasis should be placed on deriving new 565 

variables or measures from sonar that enhance our ability to explain community structure. Useful 566 

variables would include those that explain a substantial proportion of community variation or at 567 

least match that explained by the acoustic provinces in this study (i.e., a minimum of 20%). 568 

Sonar data are particularly useful in this context since they can be segmented across multiple 569 

spatial scales and used to create new variables (e.g., rugosity as a proxy for habitat complexity, 570 

slope as a proxy for larval dispersal and settlement, etc.). In addition, segmenting sonar data 571 

across multiple spatial scales enables efforts that test the impact of observational scale on one’s 572 

ability to explain variation in biological communities – an area of inquiry that is broadly relevant 573 

to and critical for habitat identification and characterization efforts within and outside of benthic 574 

marine systems.  575 
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Supplementary Material 849 

Assignment of benthic habitat classes using the criteria from the Long Island Sound 850 

classification scheme (Auster et al., 2009) and the Coastal and Marine Ecological Classification 851 

Standard (FGDC, 2012) 852 

Two habitat classification schemes were applied to the data sets in this study: (1) A classification 853 

scheme for the Long Island Sound (LIS) region (Auster et al. 2009), hereafter referred to as the 854 

LIS scheme and (2) the Coastal and Marine Ecological Classification Standard (CMECS) 855 

(FGDC 2012). The LIS scheme is largely hierarchical and is an adaptation of a deep water 856 

scheme by Greene et al. (1999). The broadest unit, the System level, divides an area into multiple 857 

seascapes (e.g., western, central LIS, etc.). Below the System level, Subsystem divides habitats 858 

into intertidal, shallow subtidal (< 4 m), and deep subtidal (> 4 m). Classes within the 859 

Subsystems are based on large-scale morphological features such as channels, basins, and sand 860 

waves. The next two levels partition Classes based on sediment grain size and small-scale 861 

morphological features. At the final level, Modifiers, the scheme becomes non-hierarchical and 862 

requires characterizing a variety of physical, chemical, geological, biological, and anthropogenic 863 

features. The LIS scheme was implemented by assigning the environmental data from each 864 

sample a unique category code at the System through the Secondary Subclass levels (Table S1). 865 

The codes were then joined together by concatenation in a manner similar to that recommended 866 

by FGDC (2014). The fully formed code was used to produce unique categorical variables for 867 

analysis. As suggested by Weaver et al. (2013), the Class level in the LIS scheme is equivalent or 868 

nearly equivalent to Geoform in CMECS (described below), so the Geoform categories were 869 

used for Class. 870 
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Table S1. Classification of sampling stations using the LIS scheme (Auster et al. 2009). The Folk (1954) sediment 871 

categories under Primary Subclass level are represented by abbreviations that refer to descriptive names: G = gravel, 872 

mG = muddy gravel, msG = muddy sandy gravel, sG = sandy gravel, gmS = gravelly muddy sand, gM = gravelly 873 

mud, gmS = gravelly muddy sand, gS = gravelly sand, (g)M = slightly gravelly mud, (g)sM = slightly gravelly 874 

sandy mud, (g)S = slightly gravelly sand, M = mud, sM = sandy mud, mS = muddy sand, S = sand. 875 

 876 

CMECS is in its fourth version (FGDC 2012) and was preceded by a classification system by 877 

Allee et al. (2000). Environments in this scheme are initially assigned to one of three systems: 878 

Marine, Estuarine, and Lacustrine (Table S2). The Estuarine System, which represents all of the 879 

study areas, is divided into four Subsystems: Coastal (< 4 m), Open Water (> 4 m), Tidal 880 

Riverine Coastal (<4m), and Tidal Riverine Open Water (> 4m; Table 2). All sampling locations 881 

were subtidal. Data sets were further characterized within four Components: Water Column, 882 

Geoform, Substrate, and Biotic. Classification within a Component is hierarchical, but each 883 

Component can be investigated independently of the others. In the present study, the Water 884 

Column Component was not utilized. As with the LIS scheme, environmental data were used to 885 

Study Area System Subsystem Class Primary Subclass (Folk 1954) Secondary Subclass

Haverstraw Bay Hudson River Estuary Subtidal shallow Mollusc Reef G None

Subtidal deep Flat mG msG sG

Channel gM gmS -

Dredged Channel (g)M (g)sM (g)mS -

M sM mS S

Tappan Zee Hudson River Estuary Subtidal shallow Mollusc Reef - None

Subtidal deep Flat mG msG sG

Wave Field gM - -

Channel (g)M (g)sM (g)mS -

M sM mS -

Huntington Harbor Western Long Island Sound Subtidal shallow Basin - None

Subtidal deep mG msG sG

gM gmS gS

(g)M (g)sM (g)mS (g)S

M - - -

Robins Island Peconic Bay Estuary Subtidal shallow Basin - Biogenic reef

Subtidal deep - - - None

gM gmS -

- (g)sM (g)mS (g)S

- sM mS S

Shelter Island Peconic Bay Estuary Subtidal shallow Basin - Biogenic reef

Subtidal deep Flat mG msG sG None

gM gmS gS

- - - (g)S

- - - -
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assign unique category codes to elements in the scheme, and these codes were joined by 886 

concatenation into categorical variables for analysis. Geoforms were defined to Level 1, the 887 

Substrate Component to Subgroup, and the Biotic Component to Subclass (Table S2).  888 

Table S2. Classification of sampling stations using CMECS (FGDC 2012). The Folk (1954) sediment categories 889 

under Substrate Subgroup are represented by abbreviations that refer to descriptive names: G = gravel, mG = muddy 890 

gravel, msG = muddy sandy gravel, sG = sandy gravel, gmS = gravelly muddy sand, gM = gravelly mud, gmS = 891 

gravelly muddy sand, gS = gravelly sand, (g)M = slightly gravelly mud, (g)sM = slightly gravelly sandy mud, (g)S = 892 

slightly gravelly sand, M = mud, sM = sandy mud, mS = muddy sand, S = sand. 893 

 894 

  895 

Study

Area System Subsystem Geoform Origin Geoform Substrate Origin Substrate Class Substrate Subclass Substrate Group Biotic Setting Biotic Class Biotic Subclass

Haverstraw Bay Estuarine Tidal Riverine Coastal Anthropogenic Dredged Channel Geologic Unconsolidated Mineral Coarse Unconsolidated  Gravelly G Benthic/Attached Biota Faunal Bed Soft Sediment Fauna

Tidal Riverine Open Water Geologic Flat Fine Unconsolidated Slightly Gravelly mG msG sG

Channel Mud gM gmS -

Biogenic Mollusc Reef (g)M (g)sM (g)mS -

M sM mS S

Biogenic Shell Shell Rubble Oyster Rubble

Tappan Zee Estuarine Tidal Riverine Coastal Geologic Flat Geologic Unconsolidated Mineral Coarse Unconsolidated  Gravelly - Benthic/Attached Biota Faunal Bed Soft Sediment Fauna

Tidal Riverine Open Water Channel Gravel Mixes mG msG sG

Wave Field Fine Unconsolidated Slightly Gravelly gM - -

Biogenic Mollusc Reef Sandy Mud (g)M (g)sM (g)mS -

Muddy Sand M sM mS -

Mud

Biogenic Shell Shell Rubble Oyster Rubble

Huntington Harbor Estuarine Coastal Geologic Basin Geologic Unconsolidated Mineral Coarse Unconsolidated  Gravelly - Benthic/Attached Biota Faunal Bed Soft Sediment Fauna

Open Water Gravel Mixes mG msG sG

Fine Unconsolidated Slightly Gravelly gM gmS gS

Muddy Sand (g)M (g)sM (g)mS (g)S

Sandy Mud M - - -

Mud

Robins Island Estuarine Coastal Geologic Basin Geologic Unconsolidated Mineral Coarse Unconsolidated  Gravelly - Benthic/Attached Biota Faunal Bed Soft Sediment Fauna

Open Water Slope Fine Unconsolidated Slightly Gravelly - - - Reef Biota Mollusc Reef Biota

Sand gM gmS -

Sandy Mud - (g)sM (g)mS (g)S

Muddy Sand - sM mS S

Shelter Island Estuarine Coastal Geologic Basin Geologic Unconsolidated Mineral Coarse Unconsolidated  Gravelly - Benthic/Attached Biota Faunal Bed Soft Sediment Fauna

Open Water Flat Gravel Mixes mG msG sG Reef Biota Mollusc Reef Biota

Fine Unconsolidated Slightly Gravelly gM gmS gS

- - - (g)S

- - - -

Substrate Subgroup (Folk 1954)

Aquatic Setting Geoform Component Substrate Component Biotic Component
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Estimating surficial percent cover from underwater video 896 

 897 

898 
Figure S1. An example of a pebble and seaweed bottom (top) and a sand and shell bottom (bottom) from Shelter 899 

Island. The left panels are still images extracted from underwater videos, and the right ones are the results obtained 900 

by maximum likelihood classification. These images cover 17.5 x 30 cm portions of the seabed.  901 
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Table S3. Percent cover classes identified at each study area using maximum likelihood image analysis. 902 

  903 

PERCENT COVER CLASS ABBREVIATION

TAPPAN ZEE HUNTINGTON ROBINS ISLAND SHELTER ISLAND

Sand PCSa 1.99 ± 12.19 40.19 ± 43.17

Mud PCMu 97.60 ± 9.63 83.25 ± 33.37 81.88 ± 37.11 3.17 ± 14.2

Shell Fragment PCShFg 0.97 ± 2.65 1.65 ± 3.12 1.58 ± 2.91

Shell PCSh 0.08 ± .61 0.06 ± 0.41 0.26 ± 1.17 7.10 ± 20.68

Rock PCR 0.67 ± 2.85

Pebble PCPb 1.29 ± 11.22 1.19 ± 8.18

Seaweed PCSw 0.04 ± 0.24 0.44 ± 2.35 4.94 ± 8.74

Silty Shell PCSiSh 0.97 ± 8.36 7.57 ± 22.37 0.66 ± 2.41 4.85 ± 16.01

Shell Pebble PCShPb 0.35 ± 2.30 10.53 ± 25.53

Muddy Sand PCMuSa 14.74 ± 33.51 13.5 ± 28.00

Silty Material PCSiCovered 1.07 ± 3.61

Anthropogenic Anthro 0.004 ± .040

Unknown Unk 0.21 ± 1.16 3.95 ± 19.6 0.01 ± .05 0.09 ± .67

M. prolifera Mpor 0.04 ± 0.24 0.02 ± .10 0.14 ± .32

Crepidula Crep 0.38 ± 1.72 0.15 ± .84 11.87 ± 27.28

PERCENT COVER OF EACH CLASS AT THE STUDY AREAS SURVEYED (MEAN ± 1 SD)
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Provinces identified at each study area 904 

Haverstraw Bay 905 

 906 

Multibeam backscatter data (left) and visual interpretation of acoustic provinces (right) at the Haverstraw Bay study 907 

area in the Hudson River Estuary, NY. Additional acoustic data sets were used to delineate the provinces at this site. 908 

Basemap from https://nationalmap.gov. 909 

  910 



 

 

51

Tappan Zee 911 

 912 

Sidescan sonar backscatter data (left) and visual interpretation of acoustic provinces (right) at the Tappan Zee study 913 

area in the Hudson River Estuary, NY. Basemap from https://nationalmap.gov. 914 

  915 
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Huntington Harbor 916 

 917 

 918 

Sidescan sonar backscatter data (top) and visual interpretation of acoustic provinces (bottom) at the Huntington 919 

Harbor study area on the north shore of Long Island, NY. Basemap from https://nationalmap.gov. 920 

  921 
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Robins Island 922 

 923 

 924 

Multibeam sonar backscatter data (top) and visual interpretation of acoustic provinces (bottom) at Robins Island on 925 

the east end of Long Island, NY. Basemap from https://nationalmap.gov. 926 

   927 
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Shelter Island 928 

 929 

 930 

Sidescan sonar backscatter data (top) and visual interpretation of acoustic provinces (bottom) at Shelter Island on the 931 

east end of Long Island, NY. Basemap from https://nationalmap.gov. 932 
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Cross-validation vs. AIC 933 

For MRT, 10-fold cross-validation was applied to each binary split, and splitting continued until 934 

the minimum cross-validated error was reached. The tree was then pruned back to the simplest 935 

one whose cross-validated error was within one standard error of the minimum cross-validated 936 

error (Breiman et al., 1984; Hastie et al., 2001). In RDA, forward selection in Canoco 4.5 was 937 

used to identify the variable that explained the largest fraction of faunal variation, and this 938 

variable was added to the RDA first. Subsequent explanatory variables were added to the 939 

analysis in the order of their explanatory value. Cross-validation was applied to each step of this 940 

sequence to identify the minimum cross-validated error. The model was then trimmed as in MRT 941 

to the model with the fewest variables whose cross-validated error was within one standard error 942 

of the minimum cross-validated error (Breiman et al., 1984). To account for variation due to 943 

random data partitioning, the median result from at least 5 cross-validation runs is reported.  944 

Using the minimum cross-validated r2 instead of a model with the smallest number of parameters 945 

within one standard error of the minimum or using Akaike’s information criterion (AIC; Akaike, 946 

1973) would have resulted in models with a larger number of environmental variables. With the 947 

former, it would have been difficult to justify that the additional model variables added real 948 

explained variance. The latter is appropriate and perfectly suitable under normal circumstances 949 

in applications where there is a chance of missing some important property and where cross-950 

validation is not implemented. Unfortunately, assessing the performance of explanatory variables 951 

across multiple data sets is not possible using AIC since absolute values of this measure have no 952 

interpretation (Burnham and Anderson 2002), unlike r2 whose meaning extends across different 953 
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data sets. It should also be noted that AIC asymptotically coincides with generalized cross-954 

validation in evaluating subsets of explanatory variables (Golub et al., 1979). 955 

Detailed summary of model results 956 

Table S4. Detailed summary of the single and multiple variable model results for each study area: k refers to the 957 

total number of groups in MRT or the total number of variables selected in RDA, r2 is the coefficient of 958 

determination, CV r2 is cross-validated r2, and S.E. is the standard error of cross-validated r2 for each model. All 959 

three measures are reported as a percentage of the total variance. The last column lists grouping criteria in MRT or 960 

the variables selected in RDA. MRT groups are listed as sets ({}). Provinces are listed as letters and the grain size 961 

categories for the simplified sediment models are listed using the abbreviations from Folk (1954). 962 

 963 

Model k r2 CV r2 S.E. MRT grouping criteria & variables selected in RDA

Fixed water depth 2 9.9 2.1 6.7 {shallow}  {deep}

Flexible depth 2 12.9 3.5 6.3 {water depth >= 4.8}  {water depth < 4.8}

Continuous depth 1 10.6 3.2 7.9 continuous water depth

Fixed sediment 11 35.5 1.1 8.7 All Folk categories

Simplified sediment 2 14.1 1.4 7.8 {(g)M, (g)mS, (g)sM, gM, gmS, M, sM}  {G, mG, msG, sG}

Flexible sediment 2 15.9 4.8 7.8 {% silt-clay >= 29.6}  {% silt-clay < 29.6}

Continuous sediment 1 14.3 6.3 10.2 % gravel

Flexible percent cover NA NA NA NA no % cover data were collected

Continuous percent cover NA NA NA NA no % cover data were collected

Fixed geoforms 4 34.6 20.4 7.3 All geoforms

Simplified geoforms 3 30.9 22.9 6.8 {dredged channel, channel, flat}  {mollusc reef}

Fixed provinces 5 36.8 21.6 7.0 All provinces

Simplified provinces 3 32.0 24.2 6.7 {AE}  {BD}  {C}

Fixed habitat classes 23 69.0 -8.1 11.3 All 23 LIS-CMECS habitat classes

Simplified habitat classes 2 19.9 -4.9 10.7 MRT combined 23 LIS-CMECS classes into 2 groups/sets of classes

Flexible env & fixed geoforms 12 67.4 0.3 10.0 All flexible environmental & geoforms

Flexible env & simplified geoforms 2 19.2 13.9 7.0 {dredged channel, channel, flat}  {mollusc reef}

Continuous env & fixed geoforms 7 39.6 17.8 8.3 All continuous environmental & geoforms

Continuous env & simplified geoforms 3 31.0 21.2 6.4 {mollusc reef}  {flat}  {dredged channel} {channel}

Flexible env & fixed provinces 13 63.9 7.0 9.5 All flexible environmental & provinces

Flexible env & simplified provinces 3 32.0 21.3 7.1 {BD}  {AE}  {C}

Continuous env & fixed provinces 7 39.2 21.4 7.4 All continuous environmental & provinces

Continuous env & simplified provinces 3 32.1 24.6 3.5 {C}  {AE}  {BD}
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 964 

 965 

 966 

Fixed water depth 2 10.1 6.4 4.1 {shallow}  {deep}

Flexible depth 2 13.2 9.9 4.6 {water depth >= 5.8}  {water depth < 5.8}

Continuous depth 1 10.1 6.4 4.1 continuous water depth

Fixed sediment 10 23.7 6.6 4.3 All Folk categories

Simplified sediment 2 13.1 6.1 4.5 {(g)M, (g)mS, (g)sM, M, mS, sM}  {gM, mG, msG, sG}

Flexible sediment 2 16.0 9.4 4.7 {% gravel >= 6.7}  {% gravel < 6.7} 

Continuous sediment 2 14.6 11.2 4.5 % gravel

Flexible percent cover 1 0.0 -1.7 3.6 none

Continuous percent cover 1 3.3 -1.1 4.2 % silt cover

Fixed geoforms 4 29.8 22.8 4.3 All geoforms

Simplified geoforms 4 29.8 22.8 4.3 {flat}  {mollusc reef}  {channel}  {wave field}

Fixed provinces 10 44.9 32.1 4.5 All provinces

Simplified provinces 5 39.6 30.8 4.5 {A}  {BIJ}  {CH}  {DF}  {EG}

Fixed habitat classes 26 53.3 11.9 5.8 All 26 LIS-CMECS habitat classes

Simplified habitat classes 3 30.8 14.0 5.3 MRT combined 26 LIS-CMECS classes into 3 groups/sets of classes

Flexible env & fixed geoforms 19 66.9 20.5 5.5 All flexible environmental & geoforms

Flexible env & simplified geoforms 3 29.0 16.6 5.3 {flat}  {mollusc reef, channel, wave field & % silt-clay >= 68.4}  {mollusc reef, channel, wave field & 
% silt-clay < 68.4}

Continuous env & fixed geoforms 14 43.1 -43.0 67.7 All continuous environmental & geoforms

Continuous env & simplified geoforms 3 33.9 27.8 4.6 {flat}  {% silt-clay}  {water depth}

Flexible env & fixed provinces 17 65.6 19.1 6.8 All flexible environmental & provinces

Flexible env & simplified provinces 4 36.1 22.5 5.0 {BIJ}  {ACDEFGH & % silt-clay < 68.4}  {% silt-clay >= 68.4 & EH}  {% silt-clay >= 68.4 & ACDFG}

Continuous env & fixed provinces 17 45.3 -46.4 70.6 All continuous environmental & provinces

Continuous env & simplified provinces 3 35.0 29.3 3.6 {BIJ}  {% silt-clay}  {DF}
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Fixed water depth 2 6.6 3.1 7.4 {shallow}  {deep}

Flexible depth 6 36.7 11.0 6.7 {water depth < 4.0}   {4.0-5.3}   {5.3-5.9}  {5.9-8.8}  {8.8-9.2}  {> 9.2}

Continuous depth 1 13.2 9.9 4.6 continuous water depth

Fixed sediment 10 29.7 3.0 7.9 All 13 LIS-CMECS habitat classes+I75:I82

Simplified sediment 2 12.4 3.4 7.1 {(g)M, (g)mS, (g)sM, gM, gmS, M}  {gS, mG, msG, sG}

Flexible sediment 2 12.8 6.9 6.9 {% gravel >= 25.6}  {% gravel < 25.6}

Continuous sediment 2 17.8 10.8 8.2 % gravel

Flexible percent cover 2 9.9 3.9 6.5 {% mud cover >= 97.2}  {% mud cover < 97.2}

Continuous percent cover 3 11.4 2.2 5.8 {% mud cover}  {% unknown cover}  {% M. porifera cover}

Fixed geoforms 1 0.0 -3.2 6.5 All geoforms

Simplified geoforms 1 0.0 -3.2 6.5 Only 1 Geoform identified at this site: basin

Fixed provinces 15 58.7 36.7 6.2 All provinces

Simplified provinces 7 48.9 28.5 7.5 {O}  {I}  {HLMN}  {E}  {D}  {AC}  {FGJK}

Fixed habitat classes 13 34.1 2.7 7.5 All 13 LIS-CMECS habitat classes

Simplified habitat classes 2 13.6 7.4 6.7 MRT combined 13 LIS-CMECS classes into 2 groups/sets of classes

Flexible env & fixed geoforms 17 64.0 -0.8 9.9 All flexible environmental & geoforms

Flexible env & simplified geoforms 3 26.0 15.1 7.0 {% gravel >= 25.6}  {% gravel < 25.6 & water depth < 6.9}  {% gravel < 25.6 & water depth >= 6.9}

Continuous env & fixed geoforms 16 32.0 -58.3 53.0 All continuous environmental & geoforms

Continuous env & simplified geoforms 2 24.9 18.9 4.3 {% gravel}  {water depth}

Flexible env & fixed provinces 17 73.9 15.6 8.2 All flexible environmental & provinces

Flexible env & simplified provinces 6 52.9 26.7 8.5 {O}  {AC}  {FGJK}  {HILMN}  {BDE & water depth < 9.4}  {BDE and water depth >= 9.4}

Continuous env & fixed provinces 23 63.4 -31.0 56.6 All continuous environmental & provinces

Continuous env & simplified provinces 5 44.0 34.5 6.8 {% gravel}  {water depth}  {O}  {AC}  {BD}
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 967 

 968 

Fixed water depth 2 8.3 -3.5 10.1 {shallow}  {deep}

Flexible depth 3 25.9 3.7 8.7 {water depth < 6.0}  {water depth >= 6.0 & < 12.5}  {water depth >= 12.5}

Continuous depth 1 13.2 9.9 4.6 continuous water depth

Fixed sediment 8 26.6 -1.4 9.9 All Folk categories

Simplified sediment 2 14.8 4.6 8.7 {(g)mS, (g)sM, gM, gmS, mS, sM}  {(g)S, S}

Flexible sediment 2 14.8 6.3 8.8 {% sand >= 85.2}  {% sand < 85.2} 

Continuous sediment 2 12.7 5.6 7.1 % silt-clay

Flexible percent cover 1 0.0 3.5 10.0 none

Continuous percent cover 3 22.8 7.1 8.8 % shell fragment cover, % mud cover, % M. porifera cover

Fixed geoforms 2 1.9 -5.2 10.0 All geoforms

Simplified geoforms 1 0.0 -4.4 10.0 {basin & slope}

Fixed provinces 6 40.4 25.7 8.7 All provinces

Simplified provinces 4 33.7 21.3 8.5 {A}  {BC}  {DF}  {E}

Fixed habitat classes 10 35.6 0.4 8.9 All 10 LIS-CMECS habitat classes

Simplified habitat classes 2 14.8 3.6 8.8 MRT combined 10 LIS-CMECS classes into 2 groups/sets of classes

Flexible env & fixed geoforms 17 68.9 3.6 10.0 All flexible environmental & geoforms

Flexible env & simplified geoforms 2 14.8 6.9 8.8 {% sand >= 85.2}  {% sand < 85.2}

Continuous env & fixed geoforms 16 47.2 -101.5 75.9 All continuous environmental & geoforms

Continuous env & simplified geoforms 3 29.0 14.9 8.2 {% silt-clay}  {% mud cover}  {water depth}

Flexible env & fixed provinces 15 67.8 21.9 8.0 All flexible environmental & provinces

Flexible env & simplified provinces 4 33.7 19.8 8.5 {A}  {BC}  {DF]  {E} 

Continuous env & fixed provinces 21 60.1 -113.2 76.4 All continuous environmental & provinces

Continuous env & simplified provinces 4 40.1 25.0 7.6 {A}  {BC}  {% mud cover}  {% M. Porifera cover}
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Fixed water depth 2 9.1 4.1 5.4 {shallow}  {deep}

Flexible depth 6 32.1 8.8 6.8 {water depth < 4.7}  {4.7-5.7}  {5.7-5.9}  {5.9-8.0}  {8.0-8.6}  {>8.6}

Continuous depth 1 6.6 3.1 7.4 continuous water depth

Fixed sediment 7 25.9 9.9 5.6 All Folk categories

Simplified sediment 3 19.1 10.9 5.2 {(g)S}  {gS, sG}  {gM, gmS, mG, msG}

Flexible sediment 2 16.4 6.3 5.4 {% silt-clay >= 4.8}  {% silt-clay < 4.8}

Continuous sediment 2 16.7 8.7 4.7 % sand

Flexible percent cover 2 13.0 6.1 4.9 {% sand cover >= 55.5}  {% sand cover < 55.5}

Continuous percent cover 4 22.0 9.6 5.3 {% shell/pebble cover}  {% shell cover}  {% sand cover}  {% muddy sand cover}

Fixed geoforms 2 8.9 3.9 5.4 All geoforms

Simplified geoforms 2 8.9 3.9 5.4 {basin} {flat}

Fixed provinces 7 40.3 26.0 5.2 All provinces

Simplified provinces 5 35.8 25.6 5.3 {A}  {B}  {CEG}  {D}  {F}

Fixed habitat classes 18 47.0 3.0 7.0 All 18 LIS-CMECS habitat classes

Simplified habitat classes 2 16.6 3.4 5.8 MRT combined 18 LIS-CMECS classes into 2 groups/sets of classes

Flexible env & fixed geoforms 19 71.8 -1.0 7.4 All flexible environmental & geoforms

Flexible env & simplified geoforms 2 16.4 5.9 5.6 {% silt-clay >= 4.8}  {% silt-clay < 4.8}

Continuous env & fixed geoforms 19 44.9 -114.1 80.1 All continuous environmental & geoforms

Continuous env & simplified geoforms 1 12.9 7.1 4.4 % sand

Flexible env & fixed provinces 20 72.1 6.0 6.8 All flexible environmental & provinces

Flexible env & simplified provinces 5 37.0 17.9 5.6 {CE}  {D}  {ABF & % sand < 92.7}  {ABF & % sand >= 92.7 and depth >= 5.7}  {ABF & % sand >= 
92.7 and depth < 5.7}

Continuous env & fixed provinces 24 56.4 -146.8 78.7 All continuous environmental & provinces

Continuous env & simplified provinces 4 34.9 25.0 4.4 {% sand}  {CEG}  {D}  {A}
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